วันอาทิตย์ที่ 4 กุมภาพันธ์ พ.ศ. 2561

บทที่8 "เทคโนโลยีอวกาศ"

กล้องโทรทรรศน์
 กล้องโทรทรรศน์แบบหักเหแสง (Refractor)
          เป็นกล้องโทรทรรศน์ที่ใช้เลนส์ในการรวมแสง สามารถพบเห็นโดยทั่วไป มีใช้กันอย่างแพร่หลาย กล้องโทรทรรศน์แบบหักเหแสงส่วนมากมีขนาดเล็ก เหมาะสำหรับใช้สังเกตการณ์พื้นผิวดวงจันทร์และดาวเคราะห์ เนื่องจากให้ภาพคมชัด แต่มีข้อเสียคือ เมื่อส่องดูดาวที่สว่างมาก อาจมีความคลาดสี ถ้าหากคุณภาพของเลนส์ไม่ดีพอ
ภาพที่ 1  กล้องโทรทรรศน์แบบหักเหแสง
คลิก เพื่อดูภาพเคลื่อนไหว
          กล้องโทรทรรศน์แบบหักเหแสงโดยทั่วไป ไม่เหมาะกับงานสำรวจ เนบิวลา และกาแล็กซี เนื่องจากเทห์วัตถุประเภทนี้ มีความสว่างน้อย จำเป็นต้องใช้กำลังรวมแสงสูง เลนส์ขนาดใหญ่ที่มีความยาวโฟกัสสั้น สร้างยาก และมีราคาแพงมาก เลนส์ที่มีขนาดใหญ่ ทำให้ลำกล้องยาวและมีน้ำหนักมาก ไม่สะดวกต่อการใช้งาน
           กล้องโทรทรรศน์ชนิดนี้ถูกคิดค้นโดย เซอร์ ไอแซค นิวตัน จึงมีอีกชื่อหนึ่งว่า “กล้องโทรทรรศน์นิวโทเนียน” (Newtonian telescope) กล้องโทรทรรศน์ชนิดนี้ใช้กระจกเว้าแทนเลนส์นูน ทำให้มีราคาประหยัด กระจกขนาดใหญ่ให้กำลังรวมแสงสูง จึงเหมาะสำหรับใช้สังเกตการณ์ เทห์วัตถุที่อยู่ไกลมาก และไม่สว่าง เช่น เนบิวลา และ กาแล็กซี ถ้าเปรียบเทียบกับกล้องแบบหักเหแสง ซึ่งมีขนาดเส้นผ่านศูนย์กลางเท่ากันแล้ว กล้องโทรทรรศน์แบบสะท้อนแสง จะมีราคาถูกกว่าประมาณสองเท่า
ภาพที่ 2  กล้องโทรทรรศน์แบบสะท้อนแสง
คลิก เพื่อดูภาพเคลื่อนไหว
          อย่างไรก็ตาม กล้องนิวโทเนียนมีกระจกทุติยภูมิ ตรงปากลำกล้อง เพื่อสะท้อนแสงฉากขึ้นสู่เลนส์ตา ซึ่งอยู่ทางข้างลำกล้อง จึงเป็นอุปสรรคขวางทางเดินของลำแสง เมื่อเปรียบเทียบกล้องแบบหักเหแสง ที่มีขนาดเส้นผ่านศูนย์กลางเท่ากัน กล้องแบบหักเหแสงจะให้ภาพสว่าง และคมชัดกว่า) และในทำนองเดียวกับกล้องชนิดหักเหแสง ยิ่งใช้กระจกขนาดใหญ่ และมีความยาวโฟกัสมากขึ้น ลำกล้องก็จะต้องใหญ่โตเทอะทะ และมีน้ำหนักมาก
กล้องโทรทรรศน์ชนิดผสม (Catadioptic)
ภาพที่ 3  กล้องโทรทรรศน์ชนิดผสม
คลิก เพื่อดูภาพเคลื่อนไหว
           กล้องโทรทรรศน์แบบผสมแบ่งเป็นชนิดย่อย ๆ ได้หลายชนิด อาทิเช่น ชมิดท์-แคสสิเกรนส์ (Schmidt-Cassegrains), มักซูตอฟ-แคสสิเกรนส์ (Maksutov-Cassegrains) ซึ่งแต่ละชนิดจะมีความแตกต่างกันไป ตามองค์ประกอบทางทัศนูปกรณ์ ซึ่งอาจใช้เลนส์หรือกระจกผสมกัน แต่โดยหลักการแล้ว กล้องประเภทนี้เป็นกล้องโทรทรรศน์แบบสะท้อนแสง ซึ่งใช้กระจก 2 ชุด สะท้อนแสงกลับไปกลับมา เพื่อช่วยลดความยาวและน้ำหนักของลำกล้อง กล้องโทรทรรศน์แบบผสมบางชนิด อาจมีการนำเอาเลนส์มาใช้ในการแก้ไขภาพให้คมชัด แต่มิใช่เพื่อจุดประสงค์ในการรวมแสง ดังเช่น เลนส์ของกล้องแบบหักเหแสง เราจะพบว่า กล้องโทรทรรศน์ขนาดใหญ่ที่อยู่ในหอดูดาว ส่วนใหญ่ มักจะเป็นกล้องโทรทรรศน์
แบบนี้
ขาตั้งกล้องโทรทรรศน์ แบ่งเป็น 2 ประเภท
1. ขาตั้งแบบอัลตาซิมุธ (Alt-azimuth Mount)   เป็นขาตั้งกล้องแบบพื้นฐาน ซึ่งหันกล้องได้ 2 แกน คือ หันตามแนวราบทางข้าง และกระดกขึ้นลงในแนวดิ่ง ขากล้องชนิดนี้เหมาะสำหรับการใช้งานดูวิว
ทั่วไป ดูนก หรือดูดาว ซึ่งไม่ใช้กำลังขยายสูง โดยทั่วไปจะพบเห็นใน 2 ลักษณะคือ แบบสามขา (Tripod) และแบบด๊อบโซเนียน (Dobsonian) ซึ่งใช้กับกล้องโทรทรรศน์แบบสะท้อนแสง
ภาพที่ 4  ขาตั้งกล้องแบบอัลตาซิมุธ (ด๊อบโซเนียน)
2. ขาตั้งแบบอีเควทอเรียล (Equatorial Mount)    เป็นขาตั้งซึ่งมีแกนเอียงขนานกับแกนของโลก แกนนี้จะเล็งไปยังตำแหน่งขั้วฟ้า (ใกล้ดาวเหนือ) และหมุนด้วยความเร็วเท่ากับโลกหมุนรอบตัวเอง ทำให้
ลำกล้องชี้ไปยังดาวที่ต้องการตลอดเวลา (เรามองเห็นดาวบนฟ้าเคลื่อนที่เนื่องจากโลกหมุนรอบแกนของ
ตัวเอง) ขากล้องชนิดนี้เหมาะ สำหรับการดูดาวที่ต้องใช้กำลังขยายสูงและงานถ่ายภาพทางดาราศาสตร์
แต่ไม่เหมาะสำหรับในการส่องดูวิวบนพื้นโลก เนื่องจากแกนหมุนของกล้องเอียง ทำให้การกวาดกล้องไปตามขอบฟ้า ทำได้ยากลำบาก นอกจากนั้นขาตั้งกล้องแบบนี้ ยังมีน้ำหนัก และราคาสูงมาก
ภาพที่ 5  ขาตั้งกล้องแบบอีเควทอเรียล
เทคโนโลยีอวกาศ : ระบบการขนส่งอวกาศ
     ระบบการขนส่งอวกาศเป็นโครงการที่ถูกออกแบบให้สามารถนำชิ้นส่วนบางส่วนที่ใช้ไปแล้วกลับมาใช้ใหม่อีกเพื่อเป็นการประหยัดและมีประสิทธิภาพมากที่สุด ประกอบด้วย 3 ส่วนหลัก คือ จรวดเชื้อเพลิงแข็ง ถังเชื้อเพลิงภายนอก (สำรองไฮโดรเจนเหลวและออกซิเจนเหลว) และยานอวกาศ
ส่วนประกอบของระบบขนส่งอวกาศ ยานอวกาศ

     ระบบขนส่งอวกาศมีน้ำหนักรวมเมื่อขึ้นจากฐานปล่อยประมาณ 2,041,200 กิโลกรัม โดยจรวดเชื้อเพลิงแข็งจะถูกขับเคลื่อนจากฐานปล่อยให้นำพาทั้งระบบขึ้นสู่อวกาศด้วยความเร็วที่มากกว่าค่าความเร็วหลุดพ้น เมื่อถึงระดับหนึ่งจรวดเชื้อเพลิงแข็งทั้งสองข้างจะแยกตัวออกมาจากระบบ จากนั้นถังเชื้อเพลิงภายนอกจะแยกตัวออกจากยานอวกาศ โดยตัวยานอวกาศจะเข้าสู่วงโคจรเพื่อปฏิบัติภารกิจต่อไป ดังรูป

ระบบขนส่งอวกาศ
     การปฏิบัติภารกิจสำหรับระบบขนส่งอวกาศมีหลากหลายหน้าที่ ตั้งแต่การทดลองทางวิทยาศาสตร์ (ในสภาวะไร้น้ำหนัก) การส่งดาวเทียม การประกอบกล้องโทรทรรศน์อวกาศ การส่งมนุษย์ไปบนสถานีอวกาศ ฯลฯ ยานอวกาศจึงถูกออกแบบสำหรับบรรทุกคนได้ประมาณ 7-10 คน ปฏิบัติภารกิจได้นานตั้งแต่ไม่กี่ชั่วโมงหรืออาจใช้เวลาถึง 1 เดือน สำหรับโครงการขนส่งอวกาศขององค์การนาซามีอยู่ด้วยกัน 6 โครงการ คือ
1. โครงการเอนเตอร์ไพรส์
2. โครงการโคลัมเบีย
3. โครงการดิสคัฟเวอรี
4. โครงการแอตแลนติส
5. โครงการแชลแลนเจอร์
6. โครงการเอนเดฟเวอร์
ปัจจุบันเป็นที่ทราบกันว่าโครงการแชลแลนเจอร์และโครงการโคลัมเบียประสบความสูญเสียครั้งร้ายแรง เมื่อยานทั้งสองเกิดระเบิดขึ้นขณะอยู่บนท้องฟ้า โดยระบบขนส่งอวกาศแชลแลนเจอร์ระเบิดเมื่อวันที่ 28 มกราคม 2529 ระหว่างเดินทางขึ้นสู่อวกาศไม่เพียงกี่นาทีด้วยสาเหตจากการรั่วไหลของก๊าซเชื้อเพลิงอุณหภูมิสูงจากรอยต่อของจรวดเชื้อเพลิงแข็งด้านขวาของตัวยาน ทำให้ก๊าซอุณหภูมิสูงดังกล่าวลามไปถึงถังเชื้อเพลิงภายนอกที่บรรจุไฮโดรเจนเหลว จึงเกิดการเผาไหม้อย่างรุนแรงและเกิดระเบิดขึ้น คร่าชีวิตนักบินอวกาศ 7 คน ส่วนระบบขนส่งอวกาศโคลัมเบียเกิดระเบิดขึ้นเมื่อวันที่ 1 กุมภาพันธ์ 2546 (17 ปี หลังการระเบิดของยานแชลแลนเจอร์) โดยวิศวกรนาซาเชื่อว่าอาจเพราะตัวยานมีการใช้งานยาวนานจนอาจทำให้แผ่นกันความร้อนที่หุ้มยานชำรุด ทำให้เกิดระเบิดขึ้นหลังจากนักบินกำลังพยายามร่อนลงสู่พื้นโลก แต่ทั้งสองเหตุการณ์ในสหรัฐอเมริกายังไม่ร้ายแรงเท่าเหตุการณ์ระเบิดของจรวดของสหภาพโซเวียตขณะยังอยู่ที่ฐาน เมื่อวันที่ 24 ตุลาคม 2503 โดยมีผู้เสียชีวิตจากเหตุการณ์ดังกล่าวถึง 165 คน โศกนาฏกรรมเหล่านี้ที่เกิดขึ้นแม้จะทำให้เกิดความสูญเสียทั้งชีวิตและทรัพย์สิน แต่มนุษย์ก็ยังไม่เลิกล้มโครงการอวกาศ ยังมีความพยายามคิดและสร้างเทคโนโลยีใหม่ๆ เพื่อความปลอดภัยและลดค่าใช้จ่ายให้มากขึ้น ด้วยเป้าหมายหลักของโครงการขนส่งอวกาศในอนาคตคือการสร้างสถานีอวกาศถาวรและการทดลองทางวิทยาศาสตร์อื่นๆ
การใช้ประโยชน์จากเทคโนโลยีอวกาศ,,
1. มีการใช้ความรู้ทางวิทยาศาสตร์ในการศึกษา พัฒนา และประดิษฐ์อุปกรณ์ถ่ายภาพในช่วงคลื่น ๆ จากระยะไกล
2. ทำให้เครื่องรับและส่งสัญญาณมีประสิทธิภาพมากขึ้น แล้วนำอุปกรณ์และเครื่องส่งสัญญาณไปประกอบเป็นดาวเทียม ที่ถูกส่งขึ้นไปโคจรจรอบโลก
3. ทำให้สามารถสังเกตสิ่งต่าง ๆ บนโลกได้ระยะไกลในเวลาอันรวดเร็ว
4. ได้เรียนรู้สิ่งต่าง ๆ เกี่ยวกับเอกภพ โลก ดวงจันทร์ และดาวอื่น ๆ
5. ความก้าวหน้าด้านเทคโนโลยีอวกาศ ช่วยเปิดเผยความลี้ลับในอดีต และก่อให้เกิดประโยชน์ต่อมนุษย์ในด้านต่าง ๆ มากมาย
ดาวเทียมอุตุนิยมวิทยา
ดาวเทียมอุตุนิยมวิทยา
ดาวเทียมอุตุนิยมวิทยาเป็นเครื่องมือที่มีความสำคัญสำหรับกิจการอุตุนิยมวิทยา สามารถใช้สังเกตพื้นที่บนพื้นผิวโลกได้หลายบริเวณ รวมทั้งได้รับรู้ข้อมูลอย่างต่อเนื่องจากทั่วทั้งโลก ดังนั้น ภาพถ่ายที่ได้จากดาวเทียมอุตุนิยมวิทยา เป็นข้อมูลที่สำคัญอย่างหนึ่งสำหรับนักพยากรณ์อากาศ ทำให้สามารถติดตามและ วิเคราะห์ลักษณะอากาศที่เกิดขึ้นในขณะนั้น ๆ โดยเฉพาะในพื้นที่ที่เครื่องมืออื่น ๆ มีข้อจำกัด หรือในมหาสมุทร เช่น ลักษณะของพายุหมุนเขตร้อน เป็นต้น ดังนั้นภาพจากดาวเทียมจึงเป็นเครื่องมือสำหรับติดตามลักษณะอากาศร้ายเพื่อการเตือนภัยได้ดีที่สุดอย่างหนึ่ง นักอุตุนิยมวิทยาสามารถรับรู้ข้อมูลสภาพอากาศในช่วง 50 กิโลเมตร หรือมากกว่าทั่วทั้งโลกได้จากภาพจากดาวเทียม สามารถมองเห็นสภาพอากาศในมุมมองที่สูง และลำดับการเคลื่อนตัวของพายุบนจอคอมพิวเตอร์ได้ ดาวเทียมอุตุนิยมวิทยาดวงแรกเป็นของประเทศสหรัฐอเมริกา ชื่อ TIROS 1 (Television and Infrared Observation Satellite) ขึ้นสู่อวกาศ เมื่อวันที่ 1 เมษายน พ.ศ 2503
ดาวเทียมอุตุนิยมวิทยา
ที่มาhttp://learners.in.th/file/invisible_cloak/sputnik1.jpg

ดาวเทียมสำรวจทรัพยากร
การใช้ดาวเทียมสำรวจทรัพยากรและสภาพแวดล้อมของโลก เป็นการผสมผสานระหว่างเทคโนโลยีการถ่ายภาพ และโทรคมนาคม โดยการทำงานของดาวเทียมสำรวจทรัพยากรจะใช้หลักการ สำรวจข้อมูลจากระยะไกล
หลักการที่สำคัญของดาวเทียมสำรวจทรัพยากร คือ Remote Sensing โดยใช้คลื่นแสงที่เป็นพลังงานแม่เหล็กไฟฟ้า (EME : Electro – Magnetic Energy) ทำหน้าที่เสมือนสื่อกลางส่งผ่านระหว่างวัตถุเป้าหมาย และอุปกรณ์บันทึกข้อมูล อุปกรณ์ถ่ายถาพที่ติดตั้งอยู่บนดาวเทียม มักจะได้รับการออกแบบให้มีความสามารถถ่ายภาพ และมีความหลากหลายในรายละเอียดของภาพได้อย่างเหมาะสม เพื่อประโยชน์ในการจำแนกประเภททรัพยากรที่สำคัญๆ
ดาวเทียมสำรวจทรัพยากร
ที่มาhttp://sci4fun.com/spaceexploration/adeos2.jpg
ดาวเทียมสังเกตการณ์ดาราศาสตร์
ดาวเทียมสังเกตการณ์ดาราศาสตร์   เป็นดาวเทียมที่มีกล้องโทรทรรศน์และอุปกรณ์ดาราศาสตร์สำหรับศึกษา
วัตถุบนท้องฟ้า  ดาวเทียมแบบนี้มีทั้งประเภทโคจรรอบโลก และประเภทโคจรผ่านไปใกล้ดาวเคราะห์ หรือลงสำรวจ
ดาวเคราะห์ ซึ่งเรียกอีกชื่อหนึ่งว่ายานอวกาศ  เช่น ยานอวกาศวอยเอเจอร์
ยานอวกาศวอยเอเจอร็
ที่มาhttp://203.172.208.242/tatalad/subject/Science/darasad/voyager.jpg
 ดาวเทียมสื่อสาร
ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน นับตั้งแต่ NASA ส่งดาวเทียมสื่อสารเข้าสู่วงโคจรไป จนปัจจุบันมีบริษัทเอกชนจำนวนมากที่เข้ามาบุกเบิกธุรกิจ และทำกำไรมหาศาล จากประโยชน์ต่างๆ ที่ได้จากดาวเทียม
ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจุส่งสัญญาณไปยังสถานีภาคพื้นดิน สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า “Transponder” ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่สารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
ประโยชน์ที่ได้รับ
ด้านการติดต่อสื่อสารโทรคมนาคมทางด้านต่างๆ เช่น ทางด้านสัญญาณโทรทัศน์ สัญญาณโทรศัพท์ ข้อมูลคอมพิวเตอร์
ตัวอย่างดาวเทียมสื่อสาร
ดาวเทียม Thaicom 1 และ 2 เป็นดาวเทียมสื่อสารชุดแรกของประเทศไทย ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2536 และ 2537 ตามลำดับ เพื่อให้บริการทางด้านการสื่อสารมีรัศมีการให้ บริการครอบคลุมทั่วทั้งประเทศไทย และภูมิภาคใกล้เคียง
ดาวเทียม Thaicom 3 เป็นดาวเทียมสื่อสารอีกดวงหนึ่งของประเทศไทย ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2540 เพื่อให้บริการทางด้านการสื่อสาร มีรัศมีการให้บริการครอบคลุมทั่วทั้ง 4 ทวีป
 ดาวเทียมไทยคม
ที่มาhttp://www.nakkhaothai.com/admin/hotnews/298.jpg
 กล้องโทรทัศน์อวกาศฮับเบิล
กล้องโทรทรรศน์อวกาศฮับเบิล (อังกฤษ: Hubble Space Telescope) คือ กล้องโทรทรรศน์ในวงโคจรของโลกที่กระสวยอวกาศดิสคัฟเวอรีนำส่งขึ้นสู่วงโคจรเมื่อเดือนเมษายน ค.ศ. 1990 ตั้งชื่อตามนักดาราศาสตร์ชาวอเมริกันชื่อ เอ็ดวิน ฮับเบิล กล้องโทรทรรศน์อวกาศฮับเบิลไม่ได้เป็นกล้องโทรทรรศน์อวกาศตัวแรกของโลก แต่มันเป็นหนึ่งในเครื่องมือวิทยาศาสตร์ที่สำคัญที่สุดในประวัติศาสตร์การศึกษาดาราศาสตร์ที่ทำให้นักดาราศาสตร์ค้นพบปรากฏการณ์สำคัญต่าง ๆ อย่างมากมาย กล้องโทรทรรศน์ฮับเบิลเกิดขึ้นจากความร่วมมือระหว่างองค์การนาซาและองค์การอวกาศยุโรป โดยเป็นหนึ่งในโครงการหอดูดาวเอกขององค์การนาซาที่ประกอบด้วย กล้องโทรทรรศน์อวกาศฮับเบิล กล้องรังสีแกมมาคอมป์ตัน กล้องรังสีเอกซ์จันทรา และกล้องโทรทรรศน์อวกาศสปิตเซอร์[3]
การที่กล้องโทรทรรศน์อวกาศฮับเบิลลอยอยู่นอกชั้นบรรยากาศของโลกทำให้มันมีข้อได้เปรียบเหนือกว่ากล้องโทรทรรศน์ที่อยู่บนพื้นโลก นั่นคือภาพไม่ถูกรบกวนจากชั้นบรรยากาศ ไม่มีแสงพื้นหลังท้องฟ้า และสามารถสังเกตการณ์คลื่นอัลตราไวโอเลตได้โดยไม่ถูกรบกวนจากชั้นโอโซนบนโลก ตัวอย่างเช่น ภาพอวกาศห้วงลึกมากของฮับเบิลที่ถ่ายจากกล้องโทรทรรศน์อวกาศฮับเบิล คือภาพถ่ายวัตถุในช่วงคลื่นที่ตามองเห็นที่อยู่ไกลที่สุดเท่าที่เคยมีมา
โครงการก่อสร้างกล้องโทรทรรศน์อวกาศเริ่มต้นมาตั้งแต่ปี ค.ศ. 1923 กล้องฮับเบิลได้รับอนุมัติทุนสร้างในช่วงปี ค.ศ. 1970 แต่เริ่มสร้างได้ในปี ค.ศ. 1983 การสร้างกล้องฮับเบิลเป็นไปอย่างล่าช้าเนื่องด้วยปัญหาด้านงบประมาณ ปัญหาด้านเทคนิค และจากอุบัติเหตุกระสวยอวกาศแชลเลนเจอร์ กล้องได้ขึ้นสู่อวกาศในปี ค.ศ. 1990 แต่หลังจากที่มีการส่งกล้องฮับเบิลขึ้นสู่อวกาศไม่นานก็พบว่ากระจกหลักมีความคลาดทรงกลมอันเกิดจากปัญหาการควบคุมคุณภาพในการผลิต ทำให้ภาพถ่ายที่ได้สูญเสียคุณภาพไปอย่างมาก ภายหลังจากการซ่อมแซมในปี ค.ศ. 1993 กล้องก็กลับมามีคุณภาพเหมือนดังที่ตั้งใจไว้ และกลายเป็นเครื่องมือในการวิจัยที่สำคัญและเป็นเสมือนฝ่ายประชาสัมพันธ์ของวงการดาราศาสตร์
กล้องฮับเบิลเป็นกล้องโทรทรรศน์อวกาศตัวเดียวที่ถูกออกแบบมาให้นักบินอวกาศสามารถเข้าไปซ่อมแซมในอวกาศได้ จนถึงวันนี้มีภารกิจซ่อมบำรุงทั้งหมดสี่ภารกิจและกำลังจะมีภารกิจที่ห้าในปี ค.ศ. 2009 เป็นภารกิจสุดท้าย ภารกิจที่ 1 คือการซ่อมแซมปัญหาด้านภาพในปี ค.ศ. 1993 ภารกิจที่ 2 คือการติดตั้งเครื่องมือสองชิ้นใหม่ในปี ค.ศ. 1997 ภารกิจที่ 3 แบ่งเป็นสองภารกิจย่อยได้แก่ ภารกิจ 3A เป็นการซ่อมแซมเร่งด่วนในปี ค.ศ. 1999 และภารกิจ 3B เป็นการติดตั้งกล้องสำรวจขั้นสูงในเดือนมีนาคม ค.ศ. 2002 อย่างไรก็ตาม หลังจากเกิดโศกนาฏกรรมกระสวยอวกาศโคลัมเบียในปี ค.ศ. 2003 ภารกิจซ่อมบำรุงที่ห้าซึ่งมีกำหนดการในปี ค.ศ. 2004 ก็ถูกยกเลิกไปเพราะเรื่องความปลอดภัย นาซาเห็นว่าภารกิจที่ต้องใช้คนนั้นอันตรายเกินไป แต่ก็ได้ทบทวนเรื่องนี้อีกครั้ง และในวันที่ 31 ตุลาคม ค.ศ. 2006 ไมค์ กริฟฟิน ผู้บริหารของนาซาจึงเปิดไฟเขียวให้กับภารกิจซ่อมบำรุงฮับเบิลครั้งสุดท้ายโดยจะใช้กระสวยอวกาศแอตแลนติสขนส่งลูกเรือ ภารกิจนี้มีกำหนดการในเดือนตุลาคม ค.ศ. 2008 [4][5] ทว่าในเดือนกันยายน ค.ศ. 2008 มีการตรวจพบข้อผิดพลาดบางประการกับตัวกล้อง[6] ทำให้ต้องเลื่อนกำหนดการซ่อมบำรุงออกไปเป็นเดือนพฤษภาคม ค.ศ. 2009[7] เพื่อเตรียมการซ่อมแซมเพิ่มเติม กระสวยอวกาศแอตแลนติสนำยานซ่อมบำรุงขึ้นปฏิบัติการครั้งสุดท้ายเมื่อ 11 พฤษภาคม ค.ศ. 2009 เพื่อทำการซ่อมแซมและติตตั้งอุปกรณ์ใหม่เพิ่มเติม ซึ่งถ้าทุกอย่างเป็นไปตามแผน กล้องฮับเบิลจะกลับมาใช้งานได้ตามปกติอีกครั้งในเดือนกันยายน ค.ศ. 2009
การซ่อมครั้งนี้จะทำให้กล้องฮับเบิลสามารถใช้งานได้อย่างน้อยจนถึงปี 2014 ซึ่งเป็นปีที่จะมีการส่งกล้องโทรทรรศน์อวกาศเจมส์ เวบบ์เพื่อใช้งานแทนต่อไป กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ มีความสามารถสูงกว่ากล้องฮับเบิลมาก แต่มันจะใช้สำรวจคลื่นช่วงอินฟราเรดเท่านั้น และไม่สามารถทดแทนความสามารถในการสังเกตสเปกตรัมในช่วงที่ตามองเห็นและช่วงอัลตราไวโอเลตของฮับเบิลได้

กล้องโทรทัศน์อวกาศฮับเบิล
ที่มาhttp://topicstock.pantip.com/wahkor/topicstock/2009/02/X7483534/X7483534-11.jpg

บทที่7 "ระบบสุริยะ"

     การกำเนิดระบบสุริยะ


ระบบสุริยะ
     ส่วนใหญ่เป็นก๊าซ ยกเว้นดาวเคราะห์ดวงนอกสุด คือ ดาวพลูโตที่มีขนาดเล็ก และมีพื้นผิวเป็นของแข็ง
     ระบบสุริยะเกิดจากกลุ่มก๊าซและฝุ่นในอวกาศ ยุบรวมกันภายใต้อิทธิพลของแรงโน้มถ่วง เมื่อ 4,600 ล้านปีที่ผ่านมา ที่ใจกลางของกลุ่มก๊าซเกิดเป็นดาวฤกษ์ คือ ดวงอาทิตย์ เศษฝุ่น และก๊าซที่เหลือจากการเกิดเป็นดาวฤกษ์ เคลื่อนที่อยู่ล้อมรอบ เกิดการชน และรวมตัวกัน ภายใต้อิทธิพลของแรงโน้มถ่วง ในช่วงเวลาหลายร้อยล้านปี จนในที่สุดก็กลายเป็นดาวเคราะห์บริวาร และวัตถุอื่นๆ ในระบบสุริยะ

                                                  ภาพที่ 2 กำเนิดระบบสุริยะ
– ระบบสุริยะมีขนาดเส้นผ่านศูนย์กลาง 12,000 ล้านกิโลเมตร
– 99% ของเนื้อสารทั้งหมดของระบบสุริยะ รวมอยู่ที่ดวงอาทิตย์
ระบบสุริยะ ประกอบด้วยดวงอาทิตย์และวัตถุอื่นๆ ที่โคจรรอบดวงอาทิตย์ เช่น   ดาวเคราะห์ ดาวเคราะห์น้อย ดาวหาง และดาวบริวาร โลกเป็นดาวเคราะห์ที่อยู่ห่างจากดวงอาทิตย์เป็นลำดับที่ 3 โดยทั่วไป ถ้าให้ถูกต้องที่สุดควรเรียกว่า ระบบดาวเคราะห์ เมื่อกล่าวถึงระบบที่มีวัตถุต่างๆ โคจรรอบดาวฤกษ์
คำว่า “ระบบสุริยะ” ควรใช้เฉพาะกับระบบดาวเคราะห์ที่มีโลกเป็นสมาชิก และไม่ควรเรียกว่า “ระบบสุริยะจักรวาล” อย่างที่เรียกกันติดปาก เนื่องจากไม่เกี่ยวข้องกับคำว่า “จักรวาล” ตามนัยที่ใช้ในปัจจุบัน
วัตถุในระบบสุริยะ
     ระบบสุริยะประกอบด้วยวัตถุจำนวนมากและมีอยู่หลากหลายประเภท บางอย่างไม่สามารถจำแนกได้อย่างชัดเจนอย่างที่เคยทำได้ในอดีต สารานุกรมวิกิพีเดียของแยกออกเป็นประเภทต่างๆ ดังนี้
ดวงอาทิตย์ เป็นดาวฤกษ์ที่มีชนิดสเปกตรัม G2 มีมวลประมาณ 99.86% ของทั้งระบบ
ดาวเคราะห์ในระบบสุริยะ  มี 8 ดวง ได้แก่ ดาวพุธ ดาวศุกร์ โลก ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และ ดาวเนปจูน
     – ดาวบริวาร คือ วัตถุที่โคจรรอบดาวเคราะห์
     – ฝุ่นและอนุภาคขนาดเล็กอื่นๆ ที่ประกอบกันเป็นวงแหวนโคจรรอบดาวเคราะห์
     – ขยะอวกาศที่โคจรรอบโลก เป็นชิ้นส่วนของจรวด ยานอวกาศ หรือดาวเทียมที่มนุษย์สร้างขึ้น
     – ซากจากการก่อตัวของดาวเคราะห์ เป็นเศษฝุ่นที่จับตัวกันในยุคแรกที่ระบบสุริยะก่อกำเนิด อาจหมายรวมถึงดาวเคราะห์น้อยและดาวหาง
ดาวเคราะห์น้อย คือ วัตถุที่มีขนาดเล็กกว่าดาวเคราะห์ ส่วนใหญ่มีวงโคจรไม่เกินวงโคจรของดาวพฤหัสบดี อาจแบ่งได้เป็นกลุ่มและวงศ์ ตามลักษณะวงโคจร
     – ดาวบริวารดาวเคราะห์น้อย คือ ดาวเคราะห์น้อยขนาดเล็กที่โคจรรอบดาวเคราะห์น้อยที่มีขนาดใหญ่กว่าหรืออาจมีขนาดพอๆ กัน
     – ดาวเคราะห์น้อยทรอย คือ ดาวเคราะห์น้อยที่มีวงโคจรอยู่ในแนววงโคจรของดาวพฤหัสบดีที่จุด L4 หรือ L5 อาจใช้ชื่อนี้สำหรับดาวเคราะห์น้อยที่อยู่ที่จุดลากรางจ์ของดาวเคราะห์ดวงอื่นๆ ด้วย
สะเก็ดดาว คือ ดาวเคราะห์น้อยที่มีขนาดเท่าก้อนหินขนาดใหญ่ลงไปถึงผงฝุ่น
ดาวหาง คือ วัตถุที่มีองค์ประกอบส่วนใหญ่เป็นน้ำแข็ง มีวงโคจรที่มีความรีสูง โดยปกติจะมีจุดใกล้ดวงอาทิตย์ที่สุดอยู่ภายในวงโคจรของดาวเคราะห์วงใน และมีจุดไกลดวงอาทิตย์ที่สุดห่างไกลเลยวงโคจรของดาวพลูโต ดาวหางคาบสั้นมีวงโคจรใกล้ดวงอาทิตย์มากกว่านี้ อย่างไรก็ตาม ดาวหางที่มีอายุเก่าแก่มักสูญเสียน้ำแข็งไปหมดจนกลายเป็นดาวเคราะห์น้อย ดาวหางที่มีวงโคจรเป็นรูปไฮเพอร์โบลา อาจมีกำเนิดจากภายนอกระบบสุริยะ
เซนทอร์ คือ วัตถุคล้ายดาวหางที่มีวงโคจรรีน้อยกว่าดาวหาง มักอยู่ในบริเวณระหว่างวงโคจรของดาวพฤหัสบดีและดาวเนปจูน
วัตถุทีเอ็นโอ คือ วัตถุที่มีกึ่งแกนเอกของวงโคจรเลยดาวเนปจูนออกไป อาจแบ่งย่อยเป็น
     – วัตถุแถบไคเปอร์ มีวงโคจรอยู่ระหว่าง 30 ถึง 50 หน่วยดาราศาสตร์ คาดว่าเป็นที่กำเนิดของดาวหางคาบสั้น บางครั้งจัดดาวพลูโตเป็นวัตถุประเภทนี้ด้วย นอกเหนือจากการเป็นดาวเคราะห์ จึงเรียกชื่อวัตถุที่มีวงโคจรคล้ายดาวพลูโตว่าพลูติโน
     – วัตถุเมฆออร์ต คือ วัตถุที่คาดว่ามีวงโคจรอยู่ระหว่าง 50,000 ถึง 100,000 หน่วยดาราศาสตร์ ซึ่งเชื่อว่าเป็นถิ่นกำเนิดของดาวหางคาบยาว
เซดนา วัตถุที่เพิ่งค้นพบเมื่อเร็วๆ นี้ ซึ่งมีวงโคจรเป็นวงรีสูงมาก ห่างดวงอาทิตย์ระหว่าง 76-850 หน่วยดาราศาสตร์ ไม่สามารถจัดอยู่ในประเภทใดได้ แม้ว่าผู้ค้นพบให้เหตุผลสนับสนุนว่ามันอาจเป็นส่วนหนึ่งของเมฆออร์ต
ฝุ่น  ซึ่งกระจัดกระจายอยู่ทั่วไปในระบบสุริยะ อาจเป็นสาเหตุของปรากฏการณ์แสงจักรราศี ฝุ่นบางส่วนอาจเป็นฝุ่นระหว่างดาวที่มาจากนอกระบบสุริยะ
ดาวเคราะห์
     ดาวเคราะห์ (ภาษากรีก πλανήτης, planetes หรือ “ผู้พเนจร”) คือวัตถุขนาดใหญ่ที่โคจรรอบดาวฤกษ์ ก่อนทศวรรษ 1990 มีดาวเคราะห์ที่เรารู้จักเพียง 9 ดวง (ทั้งหมดอยู่ในระบบสุริยะ) ปัจจุบันเรารู้จักดาวเคราะห์ใหม่อีกมากกว่า 100 ดวง ซึ่งเป็นดาวเคราะห์นอกระบบ คือ โคจรรอบดาวฤกษ์ดวงอื่นที่ไม่ใช่ดวงอาทิตย์
     ทฤษฎีที่เป็นที่ยอมรับกันมากที่สุดในปัจจุบันกล่าวว่าดาวเคราะห์ก่อตัวขึ้นจากการยุบตัวลงของกลุ่มฝุ่นและแก๊ส พร้อมๆ กับการก่อกำเนิดดวงอาทิตย์ที่ใจกลาง ดาวเคราะห์ไม่มีแสงสว่างในตัวเอง สามารถมองเห็นได้เนื่องจากพื้นผิวสะท้อนแสงจากดวงอาทิตย์ ดาวเคราะห์ส่วนใหญ่ในระบบสุริยะมีดาวบริวารโคจรรอบ ยกเว้นดาวพุธและดาวศุกร์ และสามารถพบระบบวงแหวนได้ในดาวเคราะห์ขนาดใหญ่อย่างดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน มีเพียงดาวเสาร์เท่านั้นที่สามารถมองเห็นวงแหวนได้ชัดเจนด้วยกล้องโทรทรรศน์
นิยามของดาวเคราะห์
     เมื่อวันที่ 24 สิงหาคม พ.ศ. 2549 ที่ประชุมสหพันธ์ดาราศาสตร์สากล ที่กรุงปราก สาธารณรัฐเช็ก ซึ่งประกอบด้วยนักดาราศาสตร์กว่า 2500 คนจาก 75 ประเทศทั่วโลก ได้มีมติกำหนดนิยามใหม่ของดาวเคราะห์ ดังนี้
          1. ไม่ใช่ดาวฤกษ์
          2. ไม่ใช่จันทร์บริวาร
          3. มีแรงดึงดูดมากพอที่จะทำให้โครงสร้างของดาวเป็นทรงกลม
          4. เป็นดาวที่โคจรรอบดาวฤกษ์ ซึ่งในที่นี้หมายถึงดวงอาทิตย์
          5. มีขนาดเส้นผ่านศูนย์กลางอย่างน้อย 500 ไมล์ (804.63 กิโลเมตร)
     นิยามใหม่นี้ส่งผลให้ ดาวพลูโต  ถูกปลดออกจากการเป็นดาวเคราะห์ในระบบสุริยะ คงเหลือดาวเคราะห์เพียง 8 ดวง เนื่องจากดาวพลูโตไม่สามารถควบคุมแรงดึงดูดและวงโคจรของสิ่งต่างๆ ที่อยู่นอกระบบสุริยะ และให้ถือว่าดาวพลูโตเป็น ดาวเคราะห์แคระ ซึ่งมีลักษณะคล้ายกับวัตถุขนาดเล็กในระบบสุริยะ
รายชื่อดาวเคราะห์ในระบบสุริยะ  (เรียงตามระยะห่างเฉลี่ยจากดวงอาทิตย์)
     – ดาวพุธ        
     – ดาวศุกร์      
     – โลก           
     – ดาวอังคาร  
     – ดาวพฤหัส   
     – ดาวเสาร์     
     – ดาวยูเรนัส   
     – ดาวเนปจูน   
ดาวหาง
     ดาวหาง (comet) คือ วัตถุชนิดหนึ่งในระบบสุริยะ มีส่วนที่ระเหิดเป็นไอ เมื่อเข้าใกล้ดวงอาทิตย์ ทำให้เกิดชั้นฝุ่นและก๊าซที่ฝ้ามัวล้อมรอบ และทอดเหยียดออกไปภายนอกจนดูเหมือนหาง
     ดาวหางประกอบด้วยสามส่วนใหญ่ ๆ คือ นิวเคลียส โคม่า และหาง
     นิวเคลียสของดาวหางเป็น “ก้อนน้ำแข็งสกปรก” ประกอบด้วยน้ำแข็ง คาร์บอนไดออกไซด์ มีเทน แอมโมเนีย และมีฝุ่นกับหินแข็งปะปนอยู่ด้วยกัน
 ดาวหางแบ่งได้เป็น 2 ประเภทคือ ดาวหางคาบสั้น(short period comet)เป็นดาวหางที่มีคาบการโคจรรอบดวงอาทิตย์น้อยกว่า 200 ปี เช่น ดาวหางฮัลลีย์(Halley)ซึ่งมีคาบการโคจร 76 ปี และดาวหางคาบยาว(long period comet) เป็นดาวหางที่มีคาบการโคจรมากกว่า 200 ปี
ดาวเคราะห์น้อย
     ดาวเคราะห์น้อย คือวัตถุแข็งขนาดเล็กที่โคจรรอบดวงอาทิตย์ในระบบสุริยะอยู่ระหว่างดาวอังคารกับดาวพฤหัส เชื่อว่าดาวเคราะห์น้อยส่วนใหญ่เป็นซากที่หลงเหลือในจานดาวเคราะห์ก่อนเกิด ซึ่งไม่สามารถรวมตัวกันเป็นดาวเคราะห์ขนาดใหญ่ได้ระหว่างการก่อกำเนิดระบบสุริยะ ดาวเคราะห์น้อยบางดวงมีดาวบริวาร เราสามารถพบดาวเคราะห์น้อยจำนวนมากได้ภายในแถบดาวเคราะห์น้อย ซึ่งอยู่ระหว่างวงโคจรของดาวอังคารกับดาวพฤหัสบดี
 เขตของบริวารดวงอาทิตย์
พื้นที่รอบดวงอาทิตย์แบ่ง  ตามลักษณะการเกิดและองค์ประกอบเป็น 4 ส่วน
ดาวเคราะห์ชั้นใน (Inner planets)    

            อยู่ระหว่าง ดวงอาทิตย์ กับ แถบดาวเคราะห์น้อย ได้แก่ ดาวพุธ ดาวศุกร์ โลกและดาวอังคารดาวเคราะห์เหล่านี้มีพื้นผิวแข็งเช่นเดียวกับโลก  มีแก่นเป็นโลหะจึงเรียกว่า“ดาวเคราะห์หิน” หรือดาวเคราะห์แบบโลก (terrestrial  planets) คาดว่าใช้เวลาเกิดมากกว่า 100 ปี   โดยการพอกพูนมวลหลังดวงอาทิตย์เกิด
 
 
แถบดาวเคราะห์น้อย (Asteroid belt)
            อยู่ระหว่างวงโคจรของดาวอังคารและดาวพฤหัสบดี  คาดว่าก่อตัวเช่นเดียวกับวัตถุที่ก่อกำเนิดเป็นดาวเคราะห์ชั้นใน  ดาวเคราะห์น้อยจึงเป็นเศษเหลือ จากการพอกพูนเป็นดาวเคราะห์หิน  และถูกแรงรบกวนของดาวพฤหัสบดี กับดวงอาทิตย์  ทำให้มวลสารบริเวณดาวเคราะห์น้อยจับตัวให้มีขนาดใหญ่ไม่ได้  จึงมีแต่ดาวเคราะห์น้อยจำนวนมาก   เช่น  ดาวเคราะห์น้อยแกสปรา ส่วนซีรีส (Ceres)     เป็นวัตถุที่มีขนาดใหญ่ที่สุดในแถบดาวเคราะห์น้อยจัดเป็นดาวเคราะห์แคระ  และวัตถุที่ใหญ่อันดับสองคือดาวเคราะห์น้อยชื่อพาลลัส (Pallas)
 
 
                                    ภาพ: ดาวเคราะห์น้อยแกสปราซึ่งไม่กลม
 
ดาวเคราะห์ชั้นนอก  (Outer planets)
 
 
 
ดาวเคราะห์ยักษ์เป็นดาวเคราะห์ที่อยู่ถัดจากแถบดาวเคราะห์น้อยออกไป ได้แก่ ดาวพฤหัสบดี  ดาวเสาร์  ดาวยูเรนัส และดาวเนปจูน  มีองค์ประกอบหลักเป็นไฮโดรเจนและฮีเลียม  จึงเรียกว่า  ดาวเคราะห์แก๊สโดยดึงดูดแก๊สที่เบาและระเหยง่ายจนมีขนาดใหญ่
 
 
 
ดงดาวหางของออร์ต (Oort’s comet could)

            เป็นบริเวณที่อยู่ของดาวหางซึ่งเป็นวัตถุท้องฟ้าที่ไม่มีแสงสว่างในตัวเอง ประกอบด้วยฝุ่นผงเศษหิน  ก้อนน้ำแข็งและแก๊สแข็งตัวจึงเรียกว่าก้อนน้ำแข็งสกปรก  โครจรรอบดวงอาทิตย์เป็นวงรี      ขณะที่อยู่ไกลจากดวงอาทิตย์   จะไม่มีหางและแสงสว่างแต่เมื่อเข้าใกล้จะทำให้ผิวนอกของใจกลางหัวดาวหางซึ่งเป็นของแข็งระเหิดเป็นแก๊ส เป็นฝุ่น  ด้วยความร้อนและลมสุริยะกลายเป็นหัวฝุ่นและแก๊สที่พุ่งไปในทิศตรงกันข้ามกับดวงอาทิตย์ กลางเป็นหางและสว่างขึ้น   ลมสุริยะดังกล่าวจะผลักดันให้หางของดาวหางพุ่งในทิศตรงกันข้ามกับดวงอาทิตย์
    
 
 
    ภาพ:ดาวหางเฮล-บอพพ์หางแก๊ส (สีน้ำเงิน)
ชี้ตรงกับหางฝุ่น (สีขาว)  เป็นหางโค้ง                   

ดวงอาทิตย์
ดวงอาทิตย์ : ดาวฤกษ์ของเรา (THE SUN : OUR STAR)
       ดวงอาทิตย์เป็นดาวฤกษ์ที่มีขนาดไม่ใหญ่นัก  มีตำแหน่งอยู่ที่ตรงมุมหนึ่งของกาแล็กซีของเรา  ซึ่งบางทีอาจจะเป็นตำแหน่งที่ไม่อาจจะมองเห็นจากดาวเคราะห์ดวงหนึ่งดวงใดที่เป็นบริวารของดาวฤกษ์อื่นก็ได้  การดำรงชีวิตของเราต้องอาศัยดวงอาทิตย์  และเพราะว่าดวงอาทิตย์อยู่ใกล้กับโลกมากทำให้มีการศึกษาเกี่ยวกับดวงอาทิตย์มากที่สุดอันทำให้รู้จักมันได้ดีกว่าที่รู้จักดาวฤกษ์ดวงอื่น ๆ
ส่วนประกอบ (COMPOSION)       ดวงอาทิตย์เป็นดาวฤกษ ์ประเภทดาวแคระเหลือง (yellow dwarf)  ดวงหนึ่งจัดเป็นดาวฤกษ์ขนาดย่อม  แต่เพราะว่ามันอยู่ห่างจากโลกราว  93  ล้านไมล์ ( 150  ล้านกิโลเมตร)  ดวงอาทิตย์จึงเป็นดาวฤกษ์บนฟากฟ้าที่สำคัญที่สุดสำหรับเรา  ดวงอาทิตย์เป็นลูกกลมดวงใหญ่ที่ประกอบด้วยก๊าซฮีเลียมประมาณร้อยละ  24  ไฮโดรเจนร้อยละ  75  และธาตุอื่น ๆ อีกประมาณร้อยละ  1 ภายในดวงอาทิตย์มีปฏิกิริยาการหลอมนิวเคลียส (nuclear fusion reactions)  ดำเนินอยู่ ส่งผลให้อะตอมของไฮโดรเจนหลอมรวมกันเกิดเป็นอะตอมของฮีเลียมซึ่งมีน้ำหนักมากกว่าเล็กน้อยและให้พลังงานออกมาด้วย  พลังงานนี้แผ่ผ่านอวกาศมาถึงโลกทำให้สิ่งมีชีวิตเกิดขึ้นและดำรงอยู่ได้
ลักษณะทางกายภาพ
ลักษณะทางดาราศาสตร์
อุณหภูมิทีพื้นผิว
11000  ํF
ขนาดที่มองเห็น
-26.8
เส้นผ่านศูนย์กลาง
849,443 ไมล์ (1,392,530 กิโลเมตร)
ขนาดสัมบูรณ์
+4.8
ปริมาตร
 ลูกบาศก์เมตร
ระยะห่างปานกลางจากโลก
9,089,000 ไมล์
มวล
  กิโลกรัม
ระยะเวลาหมุนรอบตัวเอง 1 รอบ
25 – 30 วัน
การสังเกตการณ์ดวงอาทิตย์ (OBSERVING THE SUN)
          ท่านต้องไม่สังเกตการณ์ดวงอาทิตย์ด้วยตาเปล่าโดยตรง  เนื่องจากอาจทำให้ท่านตาบอดได้  โดยเฉพาะอย่างยิ่งต้องไม่ดุด้วยกล้องสองตา หรือกล้องโทรทรรศน์เป็นอันขาด ในการสังเกตการณ์ดวงอาทิตย์ต้องใช้กล้องโทรทรรศน์ชนิดพิเศษเท่านั้น  กล้องโทรทรรศน์ชนิดพิเศษเท่านั้น  กล้องโทรทรรศน์ชนิดพิเศษนี้จะติดที่กรองแสงและทำงานโดยการสะท้อนภาพลงบนกระจก  ตัวรับภาพจะเป็นถังขนาด   ใหญ่ปลายใบอยู่ทางด้านล่างของตัวกล้องสำหรับใช้ในการศึกษาการแผ่รังสีที่มาจากใจกลางของดวงอาทิตย์  สำหรับข้อมูลที่สำคัญเกี่ยวกับโครงสร้างของดวงอาทิตย์จะถูกรวบรวมโดยดาวเทียม  ยานอวกาศ และห้องทดลองที่ถูกปล่อยขึ้นสู่อวกาศ
           ถ้าเราดูภูมิประเทศอันเป็นพื้นราบที่อยู่ท่ามกลางแสงแดด  เราจะเห็นว่าแสงแดดสาดส่องทาบทับไปบนทุกสิ่งอย่างสม่ำเสมอกันเราไม่อาจจะมองดูดวงอาทิตย์ด้วยตาเปล่าได้  เพราะจะเป็นการเสี่ยงมากถึงขนาดที่ทำให้ตาบอดได้  แต่ถ้าเราดูดวงอาทิตย์ด้วยกล้องโทรทัศน์สุริยะ (Solar telescope) ซึ่งเป็นกล้องโทรทรรศน์สำหรับใช้ดูดวงอาทิตย์โดยเฉพาะ  เราจะสังเกตเห็นว่าพื้นผิวของดวงอาทิตย์เป็นเหมือนกับท้องทะเลอันกว้างใหญ่ไพศาล  เต็มไปด้วยคลื่นมากมายเหลือที่จะนับ  และมีจุดต่าง ๆ ซึ่งเคลื่อนที่ไปมา กับรัศมีอันโชติช่วงเจิดจ้าล้อมรอบดวงอาทิตย์อยุ่ด้วย  1 วง
โครงสร้าง  (STRUCTURE)
              ดวงอาทิตย์ประกอบขึ้นด้วยมวลก๊าซจำนวนมหาศาลซึ่งทำให้ใจกลาง (core) (1) ซึ่งเป็นส่วนในสุดที่ห้อมล้อมด้วยชั้นที่เย็นกว่าหลายชั้นนั้นร้อนจัดมาก  ที่ใจกลางดังกล่าวมีอุณหภูมิราว 36 ล้านองศาฟาเรนไฮต์   แต่ที่ผิวนอกร้อนเพียง  11,000  องศาเท่านั้น ตรงส่วนบนสุดของใจกลางเป็นเขตการแผ่รังสี ( radiant zone)  (2)  ซึ่งปลดปล่อยรังสีคลื่นแม่เหล็กไฟฟ้าออกมาภายนอก ถัดไปเป็นเขตการพา(convection zone) (3) ซึ่งเป็นที่ที่มีลำก๊าซมหิมาจำนวนมากผุดพลุ่งขึ้นและยุบลงสลับกัน  ถัดออกมาก็เป็นผิวนอกของดวงอาทิตย์ที่เรามองเห็นได้และรู้จักกันในชื่อของโฟโตสเฟียร์ (photosphere) (4) ซึ่งเป็นชั้นบาง ๆ เพียง ชั้นเดียว

             
            บนชั้นโฟโตสเฟียร์นี้ยังมีชั้นบาง ๆ อีก 1 ชั้นเรียกว่า โครโมสเฟียร์ (chromosphere)  ซึ่งหนาประมาณ 1,800 ไมล์ (3,000 กิโลเมตร) ถัดออกมาเป็นชั้นของก๊าซในสภาพเป็นไอออนที่มีความหนาแน่นต่ำและร้อนจัดมากพวยพุ่งออกมาจากดวงอาทิตย์เป็นระยะทางไกลซึ่งทำให้เห็นเป็นวงแสงสีรุ้งรอบดวงอาทิตย์เมื่อเกิดสุริยุปราคา  ชั้นของก๊าซนี้เรียกว่ากลดสุริยะ (solar corona)  เป็นชั้นที่ร้อนจัดมากชั้นหนึ่ง ทั้ง  2 ชั้นนี้ถือได้ว่าเป็นชั้นบรรยากาศของดวงอาทิตย์ (the Sun’s atmoshere)
แสงสุริยะ (SOLAR LIGHT)
              การที่ดวงอาทิตย์มีการแผ่รังสีคลื่นแม่เหล็กไฟฟ้า (electromagnetic radiation) ออกมาได้เป็นปริมาณมากมายมหาศาลนั้นเป็นผลมาจากปฏิกิริยาภายในดวงอาทิตย์นั้นเอง รังสีที่แผ่ออกนี้ส่วนหนึ่งมาถึงโลกของเรา รังสีดังกล่าวมีความยามคลื่น  (wavelenght) ต่างกันมาก ตั้งแต่รังสีเอกซเรย์  (X-ray)  ไปจนถึงคลื่นวิทยุ (radio waves) ซึ่งเราสามารถมองเห็นได้ก็เฉพาะแต่ส่วนของรังสีที่อยู่ในรูปของแสงที่มองเห็นได้ (visible light) เท่านั้น แสงดังกล่าวที่สายตาเรามองเห็นเป็นสีขาวนั้นมีรังสีอยู่หลายชนิด แต่ละชนิดมีความยาวคลื่นต่าง ๆ กันนั่นก็คือมีสี  (color) ต่างกันด้วย
จุดดับในดวงอาทิตย์ (SUNSPORT)
           จุดดับในดวงอาทิตย์เป็นบริเวณของพื้นผิวดวงอาทิตย์ที่มีสีดำ  ซึ่งมีอุณหภูมิที่ต่ำกว่าพื้นผิวที่อยู่ด้านหลัง  จุดดับดังกล่าวปรากฎให้เห็นเฉพาะบริเวณเส้นศูนย์สูตรของดวงอาทิตย์เท่านั้น  ไม่ปรากฎว่าพบที่บริเวณขั้วทั้งสองของดวงอาทิตย์เลย  จัดดับเหล่านี้แต่ละจุดจะตรงส่วนกลางจะมืดกว่าส่วนอื่น ๆ และที่ขอบจะเป็นเงามืดน้อยกว่าส่วนกลาง  รูปร่างและขนาดของจุดดับเหล่านี้จะแปรเปลี่ยนไปอย่างมากตลอดเวลา จุดดับอาจจะเกิดขึ้นแล้วหายไปภายในไม่กี่ชั่วโมง  หรืออาจจะคงอยู่ได้เป็นหลาย ๆ เดือนกว่าจะหายไปก็ได้ขึ้นอยู่กับขนาดของมัน  จุดดับในดวงอาทิตย์เคลื่อนที่ไปตามการหมุนรอบตัวเองของดวงอาทิตย์มีจำนวนที่ไม่แน่นอน  แต่จะเพิ่มขึ้นหรือลดลงทุกรอบ 11 ปี ซึ่งรู้จักกันในชื่อของ วัฎจักรสุริยะ (solar cycle)
เปลวสุริยะ] (SOLAR PROMINENCES)
           ชั้นโครโมสเฟียร์ (chromosphere) ของดวงอาทิตย์มีอุณหภูมิราว  180,000  องศา แต่เป็นชั้นที่มีความหนานแน่นไม่มากกนักและไม่ค่อยปลดปล่อยพลังงานใด ๆ ออกมา  ทว่าเป็นชั้นที่มีปรากฎการณ์หนึ่งที่น่าสนใจเป็นพิเศษกล่าวคือ มีเปลวไฟมหิมาแลบขึ้นไปจากพื้นผิวเป็นระยะทางหลายพันไมล์/กิโลเมตร เรียกกันว่าเปลวสุริยะแทรกผ่านชั้นกลดสุริยะ  (solar corona) ออกไปสู่ห้วงอวกาศ ในบางครั้งอาจจะแลบออกไปไกลถึง 610,000 ไมล์ (1 ล้านกิโลเมตร) จากพื้นผิวบนดวงอาทิตย์
การทรงกลดของดวงอาทิตย์ (THE SUN CORONA)
             ส่วนนี้เป็นส่วนบรรยากาศชั้นนอก (outer atmosphere)  ของดวงอาทิตย์เริ่มจากชั้นโครโมสเฟียร์ (chromosphere)  ออกมาในห้วงอวกาศเป็นระยะทางหลายไมล์/กิโลเมตร  ส่วนนี้เป็นส่วนที่แทบจะไม่มีความหนานแน่นเลย      และแม้จะมีอุณหภูมิราวย 1.8 ล้านองศาฟาเรนไฮต์  แต่มีการแผ่รังสีคลื่นแม่เหล็กไฟฟ้าออกมาน้อยมาก  รูปร่างของเปลวไฟก๊าซที่พวยพุ่งขึ้นไปเรียกว่ากลดสุริยะ  (solar corona)  นี้เปลี่ยนแปรไปตลอดเวลาขึ้นอยู่กับปริมาณของกิจกรรมในแต่ละรอบกิจกรรม (activity cycle) ด้วย  โดยเปลวไฟดังกล่าวจะพวยพุ่งแลบออกไปไกลมากกว่าปกติในรอบกิจกรรมที่เป็๋นจำนวนมากที่สุด
           กลดสุริยะ (solar corona) สามารถสังเกตเห็นได้ในช่วงที่ดวงอาาทิตย์เกิดสุริยุปราคาเต็มดวง  (total eclipse)   ซึ่งเป็นเวลาที่เงาของดวงจันทร์ทอดทับกับวงกลมสุริยะ (solar disk)  ได้หมดพอดี  ทำให้แลเห็นได้เฉพาะแต่ชั้นโฟโตสเฟียร์ (photosphere) ของดวงอาทิตย์ที่ล้อมด้วยรัศีที่เป็นแถบกว้างสีค่อนข้างขาว 1 วง    ซึ่งเป็นเปลวไฟที่พลุ่งวูบวาบเป็นสายเล็กและยาวจำนวนมากเท่านั้น นี่คือสิ่งที่เรียกว่า กลด   (corona)   กลดสุริยะปลดปล่อยรังสี  เอกซเรย์และแสงอัลตราไวโอเลต
ลมสุริยะ (SOLAR WIND)
          ลมสุริยะ เป็นคำที่ใช้เรียกการพัดอย่างต่อเนื่องกันของกระแสอนุภาคต่าง ๆ  ที่ดวงอาทิตย์ปล่อยออกสู่อวกาศโดยรอบกระแสดังกล่าวมีมวลเบาบางมากเพียง 4 หรืออ 5 อนุภาคต่อลูกบาศก์เซนติเมตรเท่านั้น  และเช่นเดียวกันเมื่อมาถึงโลกก็จะรบกวนการโทรคมนาคม และยังก่อให้เกิดปรากฎการณ์ตื่นตาตื่นใจที่เรียกว่า แสงออโรรา (aurora borealis) ด้วย  นอกจากนั้นลมสุริยะนี้ยังเป็นส่งที่ทำให้เราสามารถแลเห็นหางของดาวหางได้ด้วย